Apical, but not basolateral, endotoxin preincubation protects alveolar epithelial cells against hydrogen peroxide-induced loss of barrier function: the role of nitric oxide synthesis.

نویسندگان

  • Frank Rose
  • Bernd Guthmann
  • Tobias Tenenbaum
  • Ludger Fink
  • Ardeschir Ghofrani
  • Norbert Weissmann
  • Peter König
  • Leander Ermert
  • Gabriele Dahlem
  • Joerg Haenze
  • Wolfgang Kummer
  • Werner Seeger
  • Friedrich Grimminger
چکیده

The influence of LPS preincubation on hydrogen peroxide (H(2)O(2))-induced loss of epithelial barrier function was investigated in rat alveolar epithelial type II cells (ATII). Both apical and basolateral H(2)O(2) administration caused a manyfold increase in transepithelial [(3)H]mannitol passage. Apical but not basolateral preincubation of ATII with LPS did not influence control barrier properties but fully abrogated the H(2)O(2)-induced leakage response. The effect of apical LPS was CD14 dependent and was accompanied by a strong up-regulation of NO synthase II mRNA and protein and NO release. Inhibition of NO by N(G)-monomethyl-L-arginine suppressed the LPS effect, whereas it was reproduced by exogenous application of gaseous NO or NO donor agents. Manipulation of the glutathione homeostasis (buthionine-(S,R)-sulfoximine) and the cGMP pathway (1H-(1,2,4)oxadiazolo[4,3-alpha]quinoxaline-1-one; zaprinast) did not interfere with the protective effect of LPS. Superoxide (O*(-)(2)) generation by ATII cells was reduced by exogenous NO and LPS preincubation. O*(-)(2) scavenging with exogenous superoxide dismutase, the intracellular superoxide dismutase analog Mn(III)tetrakis(4-benzoic acid) porphyrin, and the superoxide scavenger nitroblue tetrazolium and, in particular, hydroxyl radical scavenging with hydroxyl radical scavenger 1,3-dimethyl-thiourea inhibited the H(2)O(2)-induced epithelial leakage response. In conclusion, apical but not basolateral LPS preincubation of ATII cells provides strong protection against H(2)O(2)-induced transepithelial leakage, attributable to an up-regulation of epithelial NO synthesis. It is suggested that the LPS-induced NO formation is effective via interaction with reactive oxygen species, including superoxide and hydroxyl radicals. The polarized epithelial response to LPS may be part of the lung innate immune system, activated by inhaled endotoxin or under conditions of pneumonia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NAD+ ameliorates inflammation-induced epithelial barrier dysfunction in cultured enterocytes and mouse ileal mucosa.

In the course of other experiments, we serendipitously observed that extracellular nicotinamide adenine dinucleotide (NAD+) ameliorated the development of epithelial hyperpermeability when monolayers of Caco-2 enterocyte-like cells were incubated with cytomix, a mixture containing interferon-gamma, interleukin-1beta, and tumor necrosis factor-alpha. We sought to characterize the effects of NAD+...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Oxidative stress-induced disruption of epithelial and endothelial tight junctions.

Mounting body of evidence indicates that the disruption of epithelial tight junctions and resulting loss of barrier function play a crucial role in the pathogenesis of a variety of gastrointestinal, hepatic, pulmonary, kidney and ocular diseases. Increased production of inflammatory mediators such as cytokines and reactive oxygen species disrupt the epithelial and endothelial barrier function b...

متن کامل

Aspirin protects endothelial cells from oxidant damage via the nitric oxide-cGMP pathway.

OBJECTIVE Aspirin is known to exert cytoprotection by presently unidentified mechanisms. This study investigates the involvement of nitric oxide (NO) in antioxidant cellular protection induced by aspirin. METHODS AND RESULTS A 24-hour incubation with hydrogen peroxide markedly reduced viability of cultured endothelial cells. Preincubation with aspirin (3 to 30 micromol/L) protected endothelia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 169 3  شماره 

صفحات  -

تاریخ انتشار 2002